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Abstract

The transport of galactic cosmic-ray helium nuclei and their

secondaries through bulk shielding is considered using the straight-ahead

approximation to the Boltzmann equation. A data base for _tuclear

interaction cross sections and secondary particle energy spectra for high-
energy light-ion breakup is prcscnted. The importance of the light ions
2H, 3H, and 3He for cosmic-ray risk estirnatio_ is discussed, and the

estimates of the fractional contribution to the neutron fluz from helium

interactions compared with other particle interactions are presented us-
ing a 1977 solar minimum cosmic-ray spectrum.

Introduction

The description of the transport of solar and cosmic radiation in spacecraft and satellites is

important for estimating radiation biological harm to astronauts. The galactic cosmic rays (GCR's)
contain a large alpha-particle component that consists of approximately 10 percent of the total flux;
this alpha-particle component is second in size only to the hydrogen component (ref. 1). Light-ion

transport will be important for studying the large solar particle e_2ents that contain a significant

alpha-particle component in addition to the dominant protons (refs. 2 and 3). Target. fragmentation
effects also produce a large fluenee of alpha particles and other light, ions; these particles and ions

are expected to bc biologically damaging because their spectra peak at low energies. An accurate

physical description of the transport alpha particles is thus needed for estimating the radiation fields

to be encountered by astronauts in spaceflight. The production of 2H and 3He from alpha-particle
fragmentation is also useful to estimate the natural abundance of these elements in the GCR's.

For high-energy, charged-particle transport, the straight-ahead approximation is accurate. The

solution of the Boltzmann equation for particle propagation in shielding materials has been developed
by Wilson and Lamkin (ref. 4) and Wilson (ref. 5), and a space radiation transport code called
BRYNTRN (refs. 6 and 7) provides an accurate numerical procedure. The accuracy of the solution

is also dependent on the nuclear interaction cross sections for fragmentation reactions in shielding
materials (ref. 8). Presently, there is a scarcity of experimental measurements for fragmentation cross
sections; therefore, theoretical models must be used to provide the large data base of cross sections for

transport in spacecraft shielding and tissue. One approximation made for heavy projectile fragments
is that the secondary spectrum is a delta function corresponding to the beam velocity that closely
resembles experimental observation; however, for light secondaries, the spectrum is much broader.

This broader spectrum places an extra burden on the development of a data base because the
secondary spectrum, as well as the total yieht of each species, must be represented in the code.

In this paper, we discuss the development of a parametric data ba_se for alpha-particle interactions
and secondaries 3He (h), 3H (t), and 2H (d) in arbitrary materials based on theoretical models and

limited experimental information. A description of the extension of the BRYNTRN code for light-ion

transport is also described, and predictions for cosmic-ray helium transport arc discussed. Alpha
particles will be the dominant source of high-energy neuirons (>100 MeV) in the GCR's and an

important source of low-energy neutrons. Estimates of the fractional contribution of secondary
neutrons compared with neutron production from other particle types will also be discussed. Light-
ion secondaries from target fragmentation are included in the transport equations. In previous

treatments (refs. 6 and 7), these secondaries were included as a local source. The new procedure has
the advantagc of including thc effects of any fllrther mmlear reactions and their contributions to the
linear energy transfer spectrum.



Transport Equations and Solutions

Thepropagationofhigh-energy4Heandits secondariesthroughbulk matterisdescribedby the
Boltzmannequation,which in the straight-aheadapproximationis of the followingform (refs.5
and6):

1 /00 0 S(E)+aj(E) ¢j(x,E)=__, fjk(E,E')Ok(x,E')dE' (1)

where vj (which denotes the range scaling parameter) is equal to Zy/Aj. The terms Z and A are the

charge and the mass number, respectively. In equation (1), S(E) is the proton stopping power, aj(E)

is the total cross section, Oj(x, E) is the differential flux spectrum of type j ions, and fjk(E, E r) is

a differential energy cross section for the redistribution of particle type and energy.

Utilizing the definitions

e dE' (2)r = S (E')

vj(x,r) = S(E') Cj(x,E) (3)

and

_j_(_,/) = s(E') fjk (z, E')

allows equation (1) to be rewritten as

(4)

[0 0 1 /7
k

(5)

This equation is solved by Wilson (ref. 5) and Wilson et al. (ref. 6) as

_j (x,r) = exp[-(j(r, x)lk_ j (O,r + _,jx) + exp[-(j(r,x)]]jk (r + ujz, r') k_k (x - z,r') dr' dz (6)

where the exponential quantity is the integrating factor given by

f0 t
(j(r, t) = aj(r + ujt') dr' (7)

Equation (7) is the basis of the numerical procedures for propagation of the solution at k_j (x, r)

to _j (x + h, r). If we choose h to be small such that

_j (/) h <<1 (8)

the solution at x + h (ref. 6) is approximately

_j(x + h,r) _- exp[-(j(r, h)] k_j(xj,r + ujh)

+ ___exp{- [(j (r,h) +(k ( r, h)l} P(r, vjh'rk + _J@)
k

(vj h/2)+(vkh/2)

(9)



for charged-particlepropagationand

tP,_(x+ h,r) _- exp[-(r_(r, h)] k_rt(x,r)

r I h)xfjk(r,r')tP k z, +Uk_ dr' (10)

for neutron propagation. In equation (9), F is related to the cumulative spectrum F as

-- j_0 hFij(h'r'r') = fij(r+z'rt) dz_Fij(r+h, rt)-F_j(r,r') (11)

with

Fij (_,/) r/_(r)= fij (E, E') dE

where e(r) is the energy associated with the residual range r and E _ = ¢(/).
procedures for evaluating equations (6) to (12) have been described in references 6 and 9.

For nuclear secondaries produced from target nuclei with A > 4, the probabilities for nuclear

collisions are small because these will be low-energy ions (e.g., typically only a few McV). The
differential flux for these ions can then be solved in closed form for the target fragments with'A > 4
as

1Oj(x,E) - Sj(F,) _k fkj (E,E')Ck(x,E) dE I (13)

The light-ion target fragments have been treated in the past (refs. 6 and 7) by using equation (13);
however, here they will be included in the transport solutions.

Reference 6 describes the numerical representation of particle ranges and stopping powers in

the BRYNTRN code. For energies greater than a few MeV/anm, Bcthe's theory using the Born
approximation is adequate if the appropriate corrections to Bragg's rule, the shell corrections, and

the effective charge arc included. Proton stopping powers are taken from the parametric expressions
of Andersen and Ziegler (rcf. 10). A modification to their shell corrections, however, has been added

to ensure a smooth transition to Bethe's asymptotic formula. For alpha particles, the electronic

stopping power cannot be derived from the proton stopping power at low energies because of the

neglect of higher order Born terms. Instead, we use Ziegler's method (refs. ll and 12) based on fits
to the ext)erimental data. For low energies, the nuclear stopping theory used herein is a modified
form of the theory of Lindhard et al. (ref. 13).

Light Ion Fragmentation on Nuclear Targets

Although the alpha particle is the most compact and tightly bound nucleus, this does not preclude

its breakup in the field of target nuclei. Fragmentation of cosmic-ray alpha particles may lead to
an important source of high-energy neutrons that will have large ranges and high values for relative

biological effectiveness. Theoretical models of light-ion cross sections have been developed (refs. 14
to 20), and we now consider these models for providing a data bmse.

The fragmentation of 4He is simpler than that of a heavier nucleus because only a small number
of final states can occur. These reactions are

(12)

The nuinerical

c_ + T ---_

'IHe + X }

3He + n + X

3H+p+X
2H+ 2H+X

2H+n+p+X

n+n+p+p+X

(14)
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where T is tile target and X is the final target. Each of the reactions in equation (14) can occur with

or without meson production if sufficient energy is available. The reactions in equation (14) are not
exhaustive of tile absorption processes; most notable of these reactions are the compound nuclear

and pickup channels that are important at low energies. A model for the two-body dissociation of

light ions has been developed (refs. 16, 17, and 20), and this model describes the first three reactions
in equation (14), which we now discuss. Tile fragmentation of the composite secondaries of 'lHe (2H

all, or :tHe) is described by tile same model.

For an inclusive reaction involving the two-body dissociation of the projectile P, we write

P + T---*a+b+ X (15)

where a and b are assumed to be the clusters that are initially present in the projectile and X is the

final unobserved target state. We consider the case in which a is the observed projectile fragment in
the measurement. Note that we must sum the unobserved target states to evaluate the cross section.

We should also consider summing possible states of the particle b. Using relativistic kinematics, the

transition matrix for equation (15) is related to the Lorentz invariant momentum distribution for

producing the fragment a by

AT m

d_ _ Ea_ / dpb E IV[ dpj 6(p,- pi)6(E,- Ei)IT, il 2 (16)Ea dpa
m=l j=l

where f and i label the final and initial states, _ is the relative projectile-target velocity, and rfi
is the transition matrix. The sunmmtion in equation (16) is ow_r the possible configurations of the

target in the final state.

The transition matrix can be written as a three-body problem of aT, bT, and ab interactions

when rearrangement channels are neglected and with the understanding that all target final and
intermediate states must be summed. Using the Faddeev method, we consider the multiple-scattering

series generated by the coupled set of integral equations

= _, + _b + _' (17)

with

where TaT, rbT, and Tab are the "two-body" amplitudes that are the transition operators for aT,
bT, or ab scattering, respectively, in the projectile-target Hilbert space. Solutions for the amplitudes

related to _FaT and TbT arc found (refs. 15 and 19) from Watson's multiple-scattering series in

the eikonal approximation. The amplitude related to :Fab will only be important at small ab relative

momentum, and it is evaluated in a separable potential model. The Green's function Go is evaluated

in the impulse approximation that neglects the binding of the nuclei of a, b, and T with respect to

their kinetic energies.

We consider the leading terms of equation (17) by truncating as

_ (1 + Tab GO)(TaT + _'bT + _'aTGOTbT + TbT Go-aT)
(21)

which considers the scattering to all orders but neglects reflection terms between projectile and target

nucleons. This equation assumes that the final-state interaction (FSI) between projectile fragments

occurs only after interactions with the target.
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The evaluationof the momentumdistribution equation(16), usingequation(21), proceeds
afteran introductionof thevertexfunctionsfor the projectiledecayandthe inclusivescattering
distributionsfor a or b interacting on the target. The vertex function is parameterized as a sum of

Yukawa fimctions with the proper asymptotic behavior at large ab separation distances. Reference 20

gives the values for parameters of the Yukawa representation of the vertex functions for light ions.

The inclusive scattering distributions for a or b reacting on tile target are found (refs. 18 and 19)
as

d2o. _- I( 2
de] f d2bd2b'

AT

exp[iq(b- b')l exp{i[_((b)- xt(b)]} Z l,I,_,, (b, b',_)
lrt=l

(22)

where K is the relative wave number, X is a mean distorting wave ill tile eikonal approximation,
q is the momentum transfer, _ is the energy loss of the projectile fragment, and I'_'_n are the
collision terms for the rnth order inelastic scattering. The collision terms are related to the two-

body amplitudes, and the fi)rm factors of the projectile cluster (a or b) and tile ground-state response
functions (Green's fimctions) of the target (refs. 18 and 19). Tile elastic fragmentation terms are

included using a first-order optical model solution for the aT or bT anlplitude. The on-shell spectra

represented by equation (22) are used to approximate tile off-shell amplitudes TaT ill equation (21).
Figures 1 and 2 show the calculations of total c_-nucleus reactions as a function of tile invariant

momentum transfer for several targets compared with the data of reference 21. Calculations of the

inelastic part are from equation (22) after integrating the energy loss. Tile ela.stic part is calculated

ill the first-order optical model. The results indicate the accuracy of using equation (22) for inclusive
scattering at high energies.

Figure 3 shows the angular distribution for 3He production in c_ + 1H reactions at 1.04 GeV

compared with the data of reference 22. The calculations show an important interference effect
among the terms in equation (21). Figure 4 shows the calculations of the invariant momentum

distribution in the longitudinal direction near 2.0 GeV incident energy with data from reference 23,
and figure 5 gives data from references 24 and 25 for the transverse direction. Theoretical calculations

provide a good representation of the data and indicate the importance of final-state interactions.

Results at other energies as described ill reference 20 indicate a similar success for the light-ion
breakup model just described.

The spectral distributions of secondaries used for the solution of the Boltzmann equation (5) are
obtained from equation (14) after integrating the solid angle. Total fragmentation cross sections

are obtained from equation (14) after integrating both the solid angle and the momentum of the

fragment. Table 1 presents the results of calculations for 3H and 3He production compared with
experimental data (refs. 22, 26, and 27).

Parameterizations of Interaction Cross Sections

We next discuss parameterizations of interaction cross sections for light ions in common shielding
materials. The work of Meyer (ref. 26) gives a complete summary of c,-1H cross sections based

on measurements taken until 1972. Parameterizations of :tH and 3He production of 1H below
300 MeV/amu are discussed in reference 28. An extensive list of earlier references of experiments is

given in reference 26. Reference 29 discusses more recent experiments in absorption cross sections

between 18 and 48 MeV. Reference 30 describes deuteron production at 1.4 GeV/amu which was
measured with the inclusive deuteron production cross section reported at 30.64 :t: 0.62 mb. The

results for tile A = 3 fragments are given ill references 22 and 27 and these results postdate the
compilation by Meyer. The most important shortcomings of the data base for 4He-1H interactions are

high-energy measurements above a few GeV and a complete absence of data for nucleon production
cross sections.



Usingour theoreticalestimatesandtheexistingdata,weparameterizethefragmentationcross
sectionsfor 3He,3H,and2Hproductionof 1Has

aaHe=42.5 l+exp[(Eth-E)/6-8] - 1

Ix 1 - 1 + 6.7e-_p(-E/34) 1 + O.36 5-_ exp [- (E - 78O)/23OO] (23)

cr3_= 15.5 1 + exp[(Eth- E)/7]

I tx 1- l+7ex_-E/55)] 1+1.8 g-_ exp [- (E - 750) /45001 (24)

and

crd = 17 1+ exp [(Eth -- E)/12] - 1 x 1 - 1 +e_p[(-_--E-)-/6] exp(-E/3000) (25)

where Eth is the threshold energy for the breakup reaction listed in table 2 (ref. 31), and E is the
kinetic energy in units of MeV/amu. The low-energy behavior of equation (25) resembles that of
the behavior in reference 28. The pickup cross section crpickup is parameterized as

°'pickup = 48 exp [-(E - Eth ) 1.7/3000]
(26)

and contributes to the inclusive 3He and 2H production cross sections. At low energies, the

resonance 5Li (which is not considered here) occurs. Figures 6 to 8 compare parameterizations with

experimental data. All cross sections are set constant above 3 GeV/amu. The energy variations
near the thresholds and the pion production region are accurately reproduced. For the 1H target,

the absorption cross section Crabs below 80 MeV is assumed as

Crabs = Cr3He + cr3H + 0"2H + crpickup (27)

Above 80 MeV (and below 80 MeV for A T >1), we use the energy-dependent parameterization

of Townsend and Wilson (ref. 32).

aab s = 10rf3(E)[R4H¢. + RA,r- 1.267/(E)] 2
(28)

where

5

1 1 _ 0.292 exp(-E/792) cos(0.228E 0453) (29)_(E) = 0.2+ _ +

with a normalization correction of 0.95 used for 1H. The argument of the cosine function is in radians.

In equation 28, the nuclear matter radii R are used. Figure 9 shows the absorption cross section for

c_-lH. An excellent reproduction of the experimental data is seen.

The proton and the neutron productions are expected to rise dramatically above pion produc-
tion thresholds because two-body collisions will be predominantly inelastic, thus leading to pion



absorptionin theA = 3 or A -- 2 clusters. Pion production has not been treated in our theoret-

ical considerations. However, the expected rise in proton and neutron cross sections occurs if we

simply balance tile absorption cross section with channels that do not lead to proton and neutron
production, respectively. Figure 10 presents these results.

The experimental data base for composite targets is extremely small. Figure 11 shows a
comparison of equation (28) with data for the 4He + 12C absorption cross sections. Agreement

is excellent, and a previous analysis (ref. 32) suggests that a sinfilar agreement exists for other

targets. The stripping reactions become more complicated for A T ) 1 because (1) there will be

several channels and (2) stripping or pickup to excited states of tile target is a contributing factor.
We follow the technique used by Serber in reference 33 by assuming there is a surface reaction for

al/anucleon stripping on 4He and scaling equation (26) by _'T ' Because 4He is its own mirror nuclei,

we ignore the coulomb effects and use equation (26) for both 3He and 3H production in the stripping
reactions. Note that 3H is not t)roduced in the stripping reactions with 1H. A slight overestimate may

occur because we expect a small contribution for the 3He exchange in the reaction (_ + 1H _ 3He

+ d. We also ignore any d production in the stripping process for A T > 1. Figure 12 shows results

for 3H and 3He production on 12C. The fragmentation cross section is scaled as A!]:31 for these

fragments. The measurements are from lVebber (ref. 27), and the datum at 3.6 GeV/amu is from
reference 34.

Table 3 compares the parametric fits with the secondary yields for charge fragments at
3.6 GeV/amu for several targets as measured (ref. 34). The experiment of reference 34 measured

only peripheral events with detection angles <5 °, and we expect the measurements of 1H secondaries

to be underestimates. The multiplicity for nucleon production from 4He at. high energies is between

1 and 1.2 compared with a value of 2 that is assumed in existing cosmic-ray codes. For 2H, we have
used a scaling of A°: 4 from our parameterization in equation (25).

The nmltiplicities for proton and neutron production from deuteron projectiles are assumed Ks

unity for transport calculations that ignore pickup reactions. For 3He and 3H projectiles, we use a
deuteron multiplicity of 0.35 based on calculations (ref. 20), and tile nucleon multiplicities are found
by balancing the inelastic cross section.

Secondary Energy Spectrum

The energy spectrum of projectile fragments is determined by the internal momentum distribution

of the projectile clusters and a weak dependence on the target caused by" dynamical effects. At low

energies, kinematical restrictions also limit the energy losses that occur. The energy spectrum of
secondaries from light-ion fragmentation is parameterized as

dry

(30)

where the width I4'F and tile downshift CF are m units of MeV/anm and E0 is tile beam kinetic
energy in units of MeV/amu. In equation (30), the normalization is given by

(31)

where ¢P(x) is the error function

2 x

4P(x) = = f exp(-u 2) du (32)
4 7r J0



and Em is the maxinmm kinetic energy of the fragment (if we assume a three-body final state). This

kinetic energy is determined by the corresponding maximum momentum:

1

(33)

where v_ is the total energy in the three-body center-of-mass frame, eB is the binding energy of

the projectile clusters, and M is the mass. The cumulative spectrum of equation (12) that results

from equation (30) is

(¢P{ [e(r)- E°(r')+CF]/(x/_WF)}-_{[-EO(r')+CF]/(v_WF)}) (34)

The energy-dependent parameters WF and CF are described in reference 20.

The elastically scattered energy spectrum of the alpha particle is parameterized using the Born
term of the optical model expansion that is normalized to the coherent model results (ref. 7). A

similar approach is followed to parameterize the quasi-elastic energy spectrum. Assuming a Gaussian

density matrix for the target, we find from equation (22)

d_ = 2rnN Z CrQE exp [--2raN Z (w -- eBt)] O(w -- eB1 )
dE

(35)

where 0 is the unit step function and

(R2J2) + B (36)
z = B +

The terms Ra and RT denote the matter radii of the alpha particle and targct, respectively, and

B is the slope parameter. An energy-dependent parameterization of B was given in reference 6.

Equation (35) is expected to underestimate the spectrum at large w because of multiple scattering

and perhaps pion production. The cunmlative spectrum that results from equation 35 is

Fii (r, r") = aQE {exp [--2mNZ (Eo -e - eB) ] -- exp [--2ran z (Eo - eB)]} (37)

For nucleon-nucleus collisions, the energy spectrum of light target fragments is parameterized (refs. 6

and 7) as

daj _ c_j v/E exp (-E/2Eoj) (38)

dE (27r E03j) 1/2

where EOj is the average energy of target fragment j. Values for EOj are derived from the Bertini
cascade code (ref. 35) in reference 6. For heavier projectiles, the target fragmentation cross section

is scaled as A_64 with the average energy kept at tile nucleon value. These assumptions are expected
to be only approximately true; however, the dominance of protons and neutrons in the GCR flux

may diminish .the importance of the accuracy of these assumptions. The most important case for

future study will be the target fragment spectra from the incident alpha particles. Tile cumulative

spectrum from equation (38) is

= ' 2z0j

where 7(a, x) is the incomplete gamma function

j_0 x
"_(a x)= exp(-t)t a-1 dt (40)



Theproductionspectraof protonsandneutronsareestimatedusingthesamemassscalingfactor
with theevaporationandcascadespectrumdescribedin reference6.

Results for Light-Ion Transport

Calculationsarenowdiscussedfor light-ionproductionusinga solarmininnnnspectrunlfrom
1977(ref. 36). Solarmodulationoccursovera 22-yearcyclewith successivesolarminimumat
approximatell-year intervalsin whichmaximuulparticleintensitiesoccur. Tile 1977spectrum
representsamaxinmmill thisalternatingsequence.Anestimateof aprimary3ttccontponcntisalso
made.

Figure13showsthe energyspectrafor (_, h, t, and d particles at various shielding depths in
a liquid hydrogen shield. These calculations neglect any primary d or h conlponcnt. The d an(t

h spectra show two local maxiula: the high-energy one at _200 MeV/amu (which corresponds to

the peak in the primary c_ spectrum,) and the low-energy one below 100 MeV/anm (which is due
to the stripping reaction (t + p -* 3tte + d). The fragmentation spectra that are shown are

narrow in relation to tile energy grid that is nornmlly used in the BIIYNT1RN code (ref. 7). The
narrowness of the spectra leads t.o an inefficient numerical procedure for t)articles above several

GeV/amu (ilhlstrated in fig. 14) in which the deuteron spectrum at 10 g/cm 2 is plotted for several

grid-point values, hltegrated quantities such as dose and close equivalent converge quickly, and
only approximately 90 points are needed for an accuracy of a few percent (as shown ill table 4 for

liquid hydrogen shields) and about 60 points for aluminum shields. Note that the target fragments
contribute for tile ahlminmn shields.

Figure 15 gives the calculations fi)r water shields, and figure 16 shows the calculations for

aluminum shields. The added source of light ions from target fragmentation is now seen at low

energies. For aluminum shields, the target fragments dominate over the projectile fl'agments d, t, and

h in the total nmnl)er of particles and in the expected biological effect, because the target, fragments
have lower velocities. The distribution between projectile and target effects will be nmch closer

when a primary 2H and :_He component is inchlded. Approxinlately 10 percent of the primary Hc
spectrum is the 3He isotope with the 2H isotopes similar in al)undance to 3He (ref. 37). Table 5 shows

the contributions ill close and dose equivalent with a breakdown in source, either from projectiles

or projectile fragments (indicated as PF) or from target fl'agmcntation (indicated as TF), given fl_r
alulninuln shields.

Figures 17(a) and 17(b) give an estimate of the importance of a prinlary :tHe abundance spectrum

in transport through liquid hydrogen and ahmlinum shields. \Ve assunle that the :tHe is 10 percent
of the total helium abundance below 100 MeV/amu and that it smoothly rises to 15 percent a.t high

energies (rcf. 37). A comparison of figures 13 and 16 with figures 17(a) and 17(b), respectively,
shows approximately a factor of 2 increase in :tHe at. moderate shields; this increase is due to
the primary component. Table 6 gives a conlparison of the close when :tHe is considered with and

without the primary eonlt)onent for the :IHo isotopes. Including the primary :IHe leads to conlparal)le
contributions for the projectile-like and the target fragment 3He dose equivalent.

Figures 18 and 19 present a breakdown in the neutron flux fl'om primary protons, alpha t)articles,
and a combination of all heavier elements versus the shielding depth for water and aluminmn shields.

These figures demonstrate that alpha particles produce an important contribution to the total
GCR neutron production and that their relative importance increases for lower mass shields. Tile

contribution for neutrons produced from target fragmentation for alpha-induced reactions carries a

large uncertainty because of the simple projectile mass scaling to the proton-induced spectra that we

have used in our calculations. This uncertainty suggests a need to improve modeling for secondary

neutron and proton and deuteron production for alpha-induced target fragmentation. Comparisons
with experimental data (refs. 38 and 39) for monoenergetic alpha-particle beams could also bc made.

Concluding Remarks

The space radiation transport code B1RYNTRN was modified to transport cosmic-ray heliunl
nuclei and their secondaries. A data base for light-ion fragmentation was discussed and implemented

9



into the transport code. Light ions produced in target fragmentation events were also transported,

which will allow their effects on linear or lineal energy spectra to be evaluated and considered for

further nuclear collisions by the helium particles. The contribution of neutron production by galactic

cosmic ray (GCR) alpha particles was estimated to be significant_ thus indicating that improvements

in target fragmentation cross sections for light ions should be made in the future. The finite widths

of the secondary spectrum from light-ion fragmentation were shown to lead to a slow convergence in

the transport algorithms above approximately 5 GeV/amu, thus suggesting that numerical methods

should be developed for improving this convergence. Measurements of the nucleon component in

these events and estimates of stripping and pickup cross sections above and below pion-production

thresholds are the most important information for validating the light-ion data base. The extension

of the cosmic-ray space radiation transport code for isotope transport allows a more detailed study

of the isotopic composition of the primary GCR.

NASA Langley Research Center

Hampton, VA 23681-0001

July 13, 1993
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Table 1. Comparisons of Calculations With Experiments for
A = 3 Fragment Production From 4He

[Calculations in parentheses; experimental data from Webber (ref. 27)]

(a) c_ + 12C--, A F

rlab, MeV/amu aan, mb O3He, Inb

203.3 93.1 ± 9.3 (77.2) 60.4 ± 6 (79.3)

377.1 79 ± 7.9 (59.9) 66.9 ± 6.7 (60.9)

519.9 (62.1) 69.4 ± 6.9 (59.8)

(b) (_ + 1H--_A F

Tlab, MeV/amu G3He, HiD

377.1 26.3 ± 2.6 (19.5)

519.9 26.4 ± 2.6 (20.8)

1025.0 24.1 ± 1.9 (22.5)

Table 2. Thresholds and Q-Values for p + 4He

Q, MeV

Reaction (a) Threshold, MeV

'1He(p, d)aHe - 18.354 22.94

4He(p, 2p)3He -19.815 24.77

4He (p, pn)3 He - 20.578 25.72

4He(p, pd)2H -23.848 29.81

4He(p, pd)2H -26.072 32.59

4He(p, ppnn) 1H -28.297 35.37

"Data taken from reference 31.

Table 3. Comparison of Experimental Fragmentation Cross Sections for
4He Projectiles at 3.6 GeV/amu With Model Fits

[Model fits in parentheses]

Fragment

1H

Values of O'F, rob, for target sa of

C A1 CuLi

166 ± 13 (536.6) 227 ± 20 (592.0) 319 + 34 (823.9) 417 ± 45 (1294.9)

2H 84 ± 15 (68.2) 91 ± 27 (91.2) 113 ± 38 (128.2) 159 ± 45 (184.2)

3H 47 + 5 (52.7) 58 ± 9 (65.4) 73 ± 20 (84.1) 95 ± 14 (109.9)

3He 48 ± 5 (48.1) 49 ± 8 (59.6) 70 ± 15 (76.7) 95 =t: 20 (100.2)

"Data taken from experiments in reference 27 which me_Lsured only partMes in peripheral events (0 < 5°).
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Table4. Convergenceof Light-IonDoseandDoseEquivalent

[Doseequivalentin parentheses]

(a)Liquidhydrogenshields

N=60 N=90 N=120

Particles D, cGy (H, cSv) D, cGy (H, cSv) D, cGy (H, cSv)

3 g/cm 2

d 0.057 (0.060) 0.063 (0.066) 0.065 (0.068)
t .071 (.073) .081 (.083) .087 (.089)

h .093 (.128) .103 (.138) .107 (.141)

a 2.560 (2.955) 2.560 (2.954) 2.560 (2.954)

l0 g/cm 2

(0.153)d

t
h

Ot

d

t

h

Ol

0.126 (0.130)
.143 (.143)
.192 (.192)

1.278 (1.461)

0.118 (0.121)
.070 (.072)
.050 (.061)
.071 (.082)

0.142 (0.146)
.159 (.163)

.172 (.211)

1.278 (1.460)

40 g/cm 2

0.135 (0.138)
.080 (.082)
.062 (.073)
.071 (.081)

0.149

.171 (.174)

.183 (.219)

1.278 (1.460)

0.144 (0.147)
.086 (.087)

.064 (.079)

.071 (.081)

(b) Aluminum shields

Particles

d

t
h

C_

d

t

h

C_

N = 45 N = 60 N -- 90

D, cGy (H, cSv) D, cGy (H, cSv) D, cGy(H, cSv)

0.355 (1.352)

.092 (.466)

.044 (.480)
3.571 (8.759)

0.386 (1.473)

.117 (.535)

.065 (.546)

3.168 (8.693)

0.435 (1.638)

.155 (.646)
.092 (.624)

1.929 (7.788)

3 g/cm 2

0.350 (1.351)

.093 (.468)
.045 (.483)

3.575 (8.743)

0.353 (1.357)

.095 (.471)

.046 (.484)

3.575 (8.758)

10 g/cm 2

0.387 (1.482) 0.395 (1.500)
.122 (.546) .126 (.551)

.069 (.554) .074 (.599)

3.176 (8.708) 3.179 (8.740)

40 g/cm 2

0.461 (1.712)
.169 (.679)

.104 (.654)

1.957 (7.987)

0.486 (1.763)

.183 (.701)

.119 (.677)

1.968 (8.116)
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Table5. DoseandDoseEquivalentFromLight Ions in Aluminum Shields

[Dose equivalent in parentheses]

pF a TF b Total

Particles D, cGy (H, cSv) D, eGy (H, cSv) D, cGy (H, cSv)

3 g/era 2

d 0.011 (0.012) 0.342 (1.345) 0.353 (1.357)

t .013 (.015) .082 (.446) .095 (.471)

h .016 (.026) .030 (.458) .046 (.484)

c_ 3.310 (4.055) 0.265 (4.703) 3.575 (8.758)

10 g/cm 2

d 0.034 (0.035) 0.361 (1.465) 0.395 (1.500)
t .038 (0.043) .092 (.508) .126 (0.551)

h .041 (0.060) .033 (.499) .074 (0.559)

a 2.890 (3.533) 0.289 (5.207) 3.179 (8.740)

40 g/cm 2

d 0.144 (0.147) 0.342 (1.616) 0.486 (1.763)

t .086 (.087) .097 (.614) .183 (.701)
h .068 (.079) .051 (.598) .119 (.677)

a .071 (.081) 1.897 (8.035) 1.968 (8.116)

aPF represents contributions from projectile fragments.
bTF represents contributions caused by target fragments.

Table 6. Dose and Dose-Equivalent Contributions From 3He in Shielding Materials

[Dose equivalent in parentheses]

(a) Liquid hydrogen shields

x, g/cm 2 With primary 3He Without primary 3He

D, eGy (H, eSv) D, eGy (H, eSv)
3

5

10
20

40

0.500 (0.577)
.485 (.583)
.424 (.485)
.286 (.325)
.103 (.117)

0.107 (0.141)

.144 (.182)

.183 (.219)

.162 (.189)

.068 (.079)

(b) Aluminum shields

x, g/cm 2 "With primary 3He Without primary aHe

D, cGy (H, cSv) D, eGy (H, cSv)

3
5

10
20

40

0.515 (1.026)

.511 (1.038)

.495 (1.051)

.459 (1.045)

.390 (1.00)

0.046 (0.484)

.057 (.523)

.074 (.559)

.095 (.662)

.119 (.677)
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Figure 15. Calculations of light-ion flux spectrum in water shields.
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Figure 16. Calculations of light-ion flux spectrum in aluminum shields.
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